- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bennett-Pierre, Grace (1)
-
Gunderson, Elizabeth_A (1)
-
Newcombe, Nora_S (1)
-
Shipley, Thomas_F (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Non-rigid spatial thinking, or mental transformations where the distance between two points in an object changes (e.g., folding, breaking, bending), is required for many STEM fields but remains critically understudied. We developed and tested a non-rigid, ductile spatial skill measure based on reasoning about knots with 279 US adults (M = 30.90, SD 5.47 years; 76% White; 48% women). The resultant 54-item measure had good reliability (α = .88). Next, 147 US adults (M = 20.65, SD 2.80 years; 48% White; 56% women) completed existing spatial skills measures, the knot reasoning measure, a verbal skill measure, and surveys of current and childhood spatial activities. Knot reasoning performance was significantly, positively correlated with existing measures of spatial skill. Mental rotation and paper folding, but not bending, predicted knot reasoning task performance. We replicated work showing that men performed better than women on mental rotation and unexpectedly found that men also outperformed women on paper folding and knot reasoning, but not bending, tasks. Using structural equation modeling, we found several significant mediation effects. Men who reported less masculine-stereotyped spatial activity engagement had higher performance on the mental rotation and knot reasoning tasks. Women who reported greater engagement in feminine-stereotyped spatial activities had higher paper folding and backwards knot reasoning performance. Spatial skills did not differ among math-intensive STEM, non-math-intensive STEM, and non-STEM majors. The studies introduce a reliable measure of non-rigid, ductile string transformations and provide initial evidence of the role of gender and gendered spatial activities on non-rigid spatial skills.more » « less
An official website of the United States government
